In this project, you'll use generative adversarial networks to generate new images of faces.
You'll be using two datasets in this project:
Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.
If you're using FloydHub, set data_dir
to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".
data_dir = './data'
# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper
helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)
show_n_images = 25
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
mnist_batch = mnist_images
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')
The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images
.
show_n_images = 25
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
celeb_batch = mnist_images
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))
Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.
The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).
You'll build the components necessary to build a GANs by implementing the following functions below:
model_inputs
discriminator
generator
model_loss
model_opt
train
This will check to make sure you have the correct version of TensorFlow and access to a GPU
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf
# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer. You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))
# Check for a GPU
if not tf.test.gpu_device_name():
warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))
Implement the model_inputs
function to create TF Placeholders for the Neural Network. It should create the following placeholders:
image_width
, image_height
, and image_channels
.z_dim
.Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)
print(celeb_batch[0].shape)
print(mnist_batch[0].shape)
import problem_unittests as tests
def model_inputs(image_width, image_height, image_channels, z_dim):
"""
Create the model inputs
:param image_width: The input image width
:param image_height: The input image height
:param image_channels: The number of image channels
:param z_dim: The dimension of Z
:return: Tuple of (tensor of real input images, tensor of z data, learning rate)
"""
# TODO: Implement Function
inputs = tf.placeholder(tf.float32, [None, image_width, image_height, image_channels], name='inputs')
z = tf.placeholder(tf.float32, [None, z_dim], name='z_input')
learning_rate = tf.placeholder(tf.float32, name='learning_rate')
return inputs, z, learning_rate
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)
# Our kernel size
kernel_size = 5
# Lazy alpha to softly clip negative values
alpha = 0.2
# Initial convolution depth
initial_conv_depth = 64
# Label smoothing rate
smoothing_rate = 0.1
# Total count of convolution layers
layer_count = 4
# The size of the images to be awaited
image_axis_size = 28
Implement discriminator
to create a discriminator neural network that discriminates on images
. This function should be able to reuse the variables in the neural network. Use tf.variable_scope
with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).
def discriminator(images, reuse=False):
"""
Create the discriminator network
:param images: Tensor of input image(s)
:param reuse: Boolean if the weights should be reused
:return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
"""
# TODO: Implement Function
with tf.variable_scope('discriminator', reuse=reuse):
conv_depth = initial_conv_depth
tar_size = image_axis_size//4 # out target image will be 7x7
# Input layer is 28x28xDims
cur_size = image_axis_size #28
layer0_conv = tf.layers.conv2d(images, conv_depth, kernel_size, strides=2, padding='same')
layer0_lazy_relu = tf.maximum(layer0_conv*alpha, layer0_conv)
cur_layer = layer0_lazy_relu
# first step without normalization resized it to 14x14x64
cur_size = cur_size//2
# for all other equal steps attach a set of convolution, normalization and lazy relu
for index in range(layer_count-1):
conv_depth *= 2 # convolutional layers always double
cur_stride = 1 # stride of 1 by default
if cur_size>tar_size: # if we are still allowed to half the size, use a stride of 2
cur_stride = 2
cur_size = cur_size//2
cur_layer = tf.layers.conv2d(cur_layer, conv_depth, kernel_size, strides=cur_stride, padding='same')
cur_layer = tf.layers.batch_normalization(cur_layer, training=True)
cur_layer = tf.maximum(cur_layer*alpha, cur_layer)
# flatten the last layer and then fully connect it to a classification boolean discrimanting between real and
# generated
flattened = tf.reshape(cur_layer, (-1, tar_size*tar_size*conv_depth))
logits = tf.layers.dense(flattened, 1)
# apply sigmoid to get everything into a 0..1 range
out = tf.sigmoid(logits)
return out, logits
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)
Implement generator
to generate an image using z
. This function should be able to reuse the variables in the neural network. Use tf.variable_scope
with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim
images.
def generator(z, out_channel_dim, is_train=True):
"""
Create the generator network
:param z: Input z
:param out_channel_dim: The number of channels in the output image
:param is_train: Boolean if generator is being used for training
:return: The tensor output of the generator
"""
# TODO: Implement Function
with tf.variable_scope('generator', reuse=True if is_train==False else False):
# Definitions
init_2d_size = image_axis_size//4
init_depth = 512
target_size = image_axis_size # result shall be 28x28 again
first_conv_layer_size = init_2d_size*init_2d_size*init_depth
layer0_densed_z = tf.layers.dense(z, first_conv_layer_size)
cur_depth = init_depth
# reshape from a one dimensional array of data for the pixels to a 3 dimensional array again
layer0_reshaped = tf.reshape(layer0_densed_z, (-1,init_2d_size,init_2d_size,init_depth))
layer0_normalized = tf.layers.batch_normalization(layer0_reshaped, training=is_train)
layer0_lazy_relu = tf.maximum(layer0_normalized*alpha,layer0_normalized)
# reconstruct the strides of the discrimnator process
cur_size = image_axis_size
tar_size = image_axis_size/4
strides = []
for index in range(layer_count):
cur_stride = 1
if cur_size>tar_size:
cur_stride = 2
cur_size = cur_size//2
strides.append(cur_stride)
# setup the center convolutional layers
cur_layer = layer0_lazy_relu
for index in range(layer_count-1):
cur_depth = cur_depth//2
cur_stride = strides[len(strides)-1-index]
cur_layer = tf.layers.conv2d_transpose(cur_layer, cur_depth, kernel_size, strides=cur_stride, padding='same')
cur_layer = tf.layers.batch_normalization(cur_layer, training=is_train)
cur_layer = tf.maximum(cur_layer*alpha, cur_layer)
# Output layer, 28x28xDim again
logits = tf.layers.conv2d_transpose(cur_layer, out_channel_dim, kernel_size, strides=2, padding='same')
# now 28x28x3 or 28x28x1 again
out = tf.tanh(logits)
return out
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)
Implement model_loss
to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:
discriminator(images, reuse=False)
generator(z, out_channel_dim, is_train=True)
def model_loss(input_real, input_z, out_channel_dim):
"""
Get the loss for the discriminator and generator
:param input_real: Images from the real dataset
:param input_z: Z input
:param out_channel_dim: The number of channels in the output image
:return: A tuple of (discriminator loss, generator loss)
"""
# TODO: Implement Function
g_model = generator(input_z, out_channel_dim)
d_model_real, d_logits_real = discriminator(input_real)
d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real) * (1.0 - smoothing_rate)))
d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))
d_loss = d_loss_real + d_loss_fake
return d_loss, g_loss
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)
Implement model_opt
to create the optimization operations for the GANs. Use tf.trainable_variables
to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).
def model_opt(d_loss, g_loss, learning_rate, beta1):
"""
Get optimization operations
:param d_loss: Discriminator loss Tensor
:param g_loss: Generator loss Tensor
:param learning_rate: Learning Rate Placeholder
:param beta1: The exponential decay rate for the 1st moment in the optimizer
:return: A tuple of (discriminator training operation, generator training operation)
"""
# TODO: Implement Function
# receive all trainable variables
t_vars = tf.trainable_variables()
# isolate discriminator and generator variables
d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
g_vars = [var for var in t_vars if var.name.startswith('generator')]
# setup adam optimizers for both
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
return d_train_opt, g_train_opt
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np
def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
"""
Show example output for the generator
:param sess: TensorFlow session
:param n_images: Number of Images to display
:param input_z: Input Z Tensor
:param out_channel_dim: The number of channels in the output image
:param image_mode: The mode to use for images ("RGB" or "L")
"""
cmap = None if image_mode == 'RGB' else 'gray'
z_dim = input_z.get_shape().as_list()[-1]
example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])
samples = sess.run(
generator(input_z, out_channel_dim, False),
feed_dict={input_z: example_z})
images_grid = helper.images_square_grid(samples, image_mode)
pyplot.imshow(images_grid, cmap=cmap)
pyplot.show()
Implement train
to build and train the GANs. Use the following functions you implemented:
model_inputs(image_width, image_height, image_channels, z_dim)
model_loss(input_real, input_z, out_channel_dim)
model_opt(d_loss, g_loss, learning_rate, beta1)
Use the show_generator_output
to show generator
output while you train. Running show_generator_output
for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator
output every 100 batches.
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
"""
Train the GAN
:param epoch_count: Number of epochs
:param batch_size: Batch Size
:param z_dim: Z dimension
:param learning_rate: Learning Rate
:param beta1: The exponential decay rate for the 1st moment in the optimizer
:param get_batches: Function to get batches
:param data_shape: Shape of the data
:param data_image_mode: The image mode to use for images ("RGB" or "L")
"""
# TODO: Build Model
# collect samples and losses for logging purposes
samples, losses = [], []
# total count of steps done
steps = 0
# steps at which the current generator state shall be visualized
log_steps_every = 100
print_every = 20
channel_count = 3 if data_image_mode=='RGB' else 1
learning_rate_value = learning_rate
# Fetch input image size
image_width = data_shape[2]
image_height = data_shape[1]
# Setup inputs
input_real, input_z, learning_rate = model_inputs(image_width, image_height, channel_count, z_dim)
# Setup loss functions
d_loss, g_loss = model_loss(input_real, input_z, channel_count)
# Setup optimizers
d_opt, g_opt = model_opt(d_loss, g_loss, learning_rate, beta1)
# Start the training
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch_i in range(epoch_count):
for batch_images in get_batches(batch_size):
# TODO: Train Model
# increase step counter
steps += 1
# rescale the images from -0.5 to +0.5 to -1.0 to +1.0
batch_images *= 2
# create random noise fir the generator with the same sample count as the real image's count
batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
# Run optimizers each turn - discriminator first - generator second
_ = sess.run(d_opt, feed_dict={learning_rate: learning_rate_value, input_real: batch_images, input_z: batch_z})
_ = sess.run(g_opt, feed_dict={learning_rate: learning_rate_value, input_z: batch_z, input_real: batch_images})
# print losses at the end of each epoch
if steps % print_every == 0:
train_loss_d = d_loss.eval({learning_rate: learning_rate_value, input_z: batch_z, input_real: batch_images})
train_loss_g = g_loss.eval({learning_rate: learning_rate_value, input_z: batch_z})
print("Epoch {}/{}...".format(epoch_i+1, epochs),
"Discriminator Loss: {:.4f}...".format(train_loss_d),
"Generator Loss: {:.4f}".format(train_loss_g))
losses.append((train_loss_d, train_loss_g))
# show the current image status regularly
if steps%log_steps_every==0:
show_generator_output(sess, show_n_images, input_z, channel_count, data_image_mode)
# show the final image status
show_generator_output(sess, show_n_images, input_z, channel_count, data_image_mode)
return
Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.
batch_size = 64
z_dim = 100
learning_rate = 0.0001
beta1 = 0.5
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2
mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
mnist_dataset.shape, mnist_dataset.image_mode)
Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.
# looks ok - Epoch 1/1... Discriminator Loss: 0.9817... Generator Loss: 0.8628
# batch_size = 64
# z_dim = 100
# learning_rate = 0.0001
# beta1 = 0.5
# awful Epoch 1/1... Discriminator Loss: 0.4308... Generator Loss: 2.8069
# batch_size = 128
# z_dim = 100
#l earning_rate = 0.0002
# beta1 = 0.5
# learning too carefully
# batch_size = 128
# z_dim = 100
# learning_rate = 0.00005
# beta1 = 0.5
batch_size = 64
z_dim = 100
learning_rate = 0.0001
beta1 = 0.5
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1
celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
celeba_dataset.shape, celeba_dataset.image_mode)
When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.